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ABSTRACT~

This pape_* presents a general 'quantitative system for association
of theory and observation. The system,, in formulation and presentation,
is directed toward the needs of the user investigator. It is weill
organized for use with autcxmtic machines in the conputing and informs-
t~on processin~g

A rn'jltivariable distribution approach to mode~l construction is
used in accounting for errors and other sources of variation. As usual,
Vrputhesized mathematical descriptions are modified in accordance with
the observational data. The requirement of a state of control is re-
garded as fundamental. The question of unidentifiability is given
prom-nent, consideration; and in this connection, the general neceasity
of caiibration is established and emphasized. The principle of maximzm
!likelihood is sugge~sted as the most acceptable ranking criterion for
the system; but modifi-:ations or decision-theoretic extensions are not
precluded. In, short, the ordinary restrictive conditions are not impooed
in, this system.

The fund~aaental ideas are discussed within the contextu~al framework,
>csystem. The general principles for applying the syptem are pre-

.we~ited and discussed. The, most important classes of models are dealsr
w~th. rathematical3y in detisil.
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StUMMARY

The Problem

We are concerned here with the problem of mathematical mode)
development in complex observational situations. We wvsh to adjust
hypothe!ized mathematical formulations in accordance with the observa-
ti,.al data. This problem is of course basic to all quantitative
science. Investigato.-s, whatever their specialized disciplines, are
currently confronted with a bewildering hodgepodge of scientific metho-
.ologies. To the great majority, preoccupied with their individual
specialties, the extensive literature of potentially applicable aathe-
matics, statistics, philosophy of scien*ýe, etc., will always b,2 practi-
cally inaccessib~e. Also, those techniques which have ordinarily been
accepted and employed, in general tend to embody unrealistic assumptions,
inherent inadeq74acies, or both.

"A generally valid system is needed which is reasonabl4 •omprehen-
"siole, at least in application. In addition, the sytem should impose
no significant inconvenience on the user investigator. More or less
generally valid systems have been attempted prevrio.isly; hom.ever, re-
s.;rictions on their use or problemi of application have apparently pre-
cluded thsir ecceptance.

Results

In this paper, a completely general system for mode] development
is presented. The entire formulation his been carried out as an attempt
to match the viewpoint of the working investigator rather than that of
the mathematical statistician. The system, in all of its component
methodologies, is principally directed to the understanding and con-
venlience of the investigator. The valid association of theory and
observation is ac-omplished without rescrt to restrictive condltions.
Except for the most general and fundamental criteria, such as the
principal of maximum likelihood which is herein suggested as most
appropriate, any needed assumptions are regarded a3 solely the investi-
gators responsibility and as necessary parts of his initial hypotheses.
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The system organization is specifically ,oriented toward use in
conjunction with large-scale automatic computing systems. It is pre-
sumed that most investigators will have access to such equimlert in the
near Nutur-, and that eventually no routine mathematical analy,;is of
significant complexity will be attempted without such access. Thus, the
matter of the investigators convenience will be resolved.

Fundamental ideas are discussed briefly, within the contextual.
framework of the system. The general principles for applying the systema
are presented and discussed. The most important classes of models are
dealt with mathematically in detail. It is hoped that this paper will
also serve as a handbook of general investigative methodology.
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INTHOIXCTION

This paper pres'ýnts a ger~erai quantitative systemn for association
of theory and observation. Most phencznenn of bcientif,4'c interest are
at leasv subject to-the poss-ioility of~ quantitative description. Phe-
namens-subject to quantitative description are also suiojec*. to :!ompact
mathematical representation. It is not necessary that sarch represen-
tia.ion be nade; a com~plete set of q~uantitative observations or data
points contain in themselves all avatlable !nformation, by definition.
However, it is our faith in the orderliness of creation, together with
Inst support~ing experience, vhich engenders it, us the desire to fi~ll
in, the space between the data points. Wve prefer' to s.3arch for mathe-
matical descriptions which not only account for unll past observations,
but also all possible observations, in order that. prediction vill be
psosible. If a descri-ption,(or model) is simple and elegart, and-at
the same time serves to correctly predict a 'rem sorable number of subse-
quenit obseivations., we feel that understanding of the eubject -phenomenon
has been achieved.

Thu 's our stated purpose in model develcpment is description and
n~t necessarily decisive action. It is of, course implied that d--crip-
tirli eventuafl~y leads to decisions and actions, but actions of character
ant. puxp~e yet to be established.- Specifically, th teria of future
'decisicns, and tha ut!.lt~y 'values of the possible ultinate consequences,
are at present unknwo~n.

The decision-theoretic apprsach has attained great stature, but
not every investigator can adopt a completely behavioristic philosophy.
Probably most will remain fundamentally realists. Nevertheless, noth-
ing precludes the incir~ion of decision theoretic considerations Into
the methods of this pal-yr.

We are concerned I -ire with the problem of model development in
complex observational t Ltuatiofls. In suckh oases, simple and elegant
descriptions are difficult to obtain. Economic pressure or urgent
necessity nay force us to resort to oversi~mplifications and unjustified,
ass~mptions. Unfortlwa'AIly,, descriptions obtained under such conditions
are not likely to be useful In predictionj, and their contribution to



understanding is likely to be small. The usual strategy 'n dealing
-with complex problems is to attempt a division into more manageable

subproblems. Hopefiully, the st.ibproblems will respond to the available
investigative procedures.. iere too, the results are not always success-
ful.

In this paper an opezational system is propoced for use in develop-
sent of complex mathematical models. To this end, consider that com-
plexity in observational situations can be conveniently divided into
two classes. First, the complexity zmy be due to a multiplicity of in-
f.Luential variables. Second, the complexity may be due to the presence
of interacting phenomena.

In the first instance, if the number of influential variables is
very large, it may be best, in the judgment of the investigator, that
the variables be grouped and their combined group influences be observed
and desc:ibed. For example, a group of influences, unobservable indi-
"viduaijy,may be represented in combination as a random variable. Or,
if the number of variables is not so large as to justify grouping, the
investigator might not wish to so simplify his theory. Instead, in
spite of the complexity, he may elect to describe deterministically the
relationships between the numerous variables taken indivldual2y.

In the second instance, it my be the case that two or more dis-
tinct phenomena are so interrelated that they cannot be observed in
iso.Lation. For example, most measurement phenomena are subject to
interaction wvth those phenomena which are the -rrors of observation.
Also, it is a coomon occurrence, that observations can only be made
indirectly. Tnat is to say, the unobservable variables of primary
interest can only be determined as functions of variab'es which are
directly observable.

Any system for development of complex mathematical model s must be
sufficiently general to encompass these situations. In the first
instance, msan wust be provided for either grouping, or individually
relating, the influences of variftibles, or both simultaneously. In the
"second instance, mans must be provided for separately describing the
effects of interrelated phenomena. The system herein presented is
generally applicable, it is reasonably simple in conception, and it
lends itself welI to use of autcmatic machines in computation and in
infomat ion processing.

The need fr an organized or systematic approach to model develop-
ment has become " easingly evident in recent years. This is due in
part to the acce. .rating trend toward greater complexity of reseerch
problems Inall of the quantitative sciences. But in addition, a wide
variety of problemu, are either inadequately treated or are completely
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intractable with currently available methods. New methods are intro-
duced here which have resulted in the solution of the prevously intract-
ab.te problems, and which at the same time, have provided a basis for the
organization of model development which is presented in this paper.

It is perhaps helpful to mention some major fields of research
which will benefit from use of this system. For example, in the bio-
logical sci.ences, reaction rate models are assuming increasing import-
ance, and stochastic models are more widely employqd than ever. The
large number of variables and interacting phenomena involved in bio-
logical systems has resulted in a generally unsatisfied demand for
accurp.te Mathematical models. Operations research is concerned almost
exclusively with mathematical model development. With reference to
these models, decisions are frequently vade which are of great and
Lmmediate importance to society; consequently, the risk in resorting
to inadequate or inaccurate models ic large. The social sciences
generally are in need of accurate ant useftl mathematical models for
complex phencmena. Fcr example, ecinametric arm lysis has been hampered
by the lack of adequate theory irn model construction; although consider-
able progress has been made in this fleiLd i'ith linear and polynomial
models. Also, th,: physical sciences are no less influenced by the
trend toward research interests in cumplex phenomena. The relativelyI
recent introduction of multidimensi,,r;l pulse-height analyzers (high-
speed, digital, multivariable data point recorder•) iv intensify4 ng bhe
need for precise methods in data interpretation.

At this time, it is not inappropriate to sugge -0 -st a reasonable
degi've of standardization be introduced in scierstif.-c method and report-
ing. Potentially, this can occur as a useful byprodut of the system
application. In some circumstances, where problems in research maAge-
ment exist, the basis my be provided therebr for control of research
quality. But most useful perhaps, is the improvement In coumication
which may result. It should be possible to readily compare or combine
models developed ,nder videly varying research enviroments. FiAnlly,
use of generally accepted procedures together with automtic data pro-
cessing can ser"e- to free scarce professional investigators from many
routine or peripheral aspects of research.

Background Note

As stated, the general problem with vhich we are concerned is tkat
or the meaningful association of theory and observation. Nere, a piae-
tical user-oriented system Ins been presented for the developeint of
mathematical models. The caleulu•s of probabilities and the Principle
of Maximum Likelihood have been employed. First to apply the calculus
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of probabilities for these purposes was Thomas Eayes. Carl Friedrich
Gauss was first to formnuate and apply the Principle of Maxinum Likell-
hood in 1809 (see R. A. Fis•ier (4), pp. 2D)-1, and H. F. Trotter (13),
pp. 127-). Gauss approached the general problem from the point of view
of his least squares theory.

In the interim, the completely general problem has been rarely con-
sidered, at least from the practical point of view. On the other hand,
restricted problems have been intensively investigated. In particular,
methods assuming linearly related or normally distributed variables
dominate the literature. These of course include such approaches as
analysis of variance, correlation aialysis, and regression analysis.
With respect to model development under restricted conditions, linear
and polynomial regression have found wide acceptance. However, a per-
sistent interest has been maintained by, a relatively small number of
investigators in the more general problem of more than one variable
subject to error. Mauny techniques, valid for restricted conditions,
have been developed. Excellent reviews of this work are offered by
M. G. Kendall (6), and Albert Madaky (8).

Several attempts to provide user-oriented systems stand out.
W. E. Deming (3), in 1943, presented a general system based on the
principle of least squares. Mrny somewhat less general expressions
of the least squares theory have been successfully reduced to practice
using dixital computers. For example, R. H. Moore and R. K. Zeigler
(10), 1960 were among the first to develop a useful and well-documented
program for generalized non-linear regression.

The most significant, as v.11 as the most general, approach pre-
viously cffered is probably thatof Trgrv lbavelmo (5), in 1944. The
treatment ls thorough, It is a system in the sense of this paper, and
it is oriented, at least In spirit, to the needs of the user investigator
(in this case econmetricians). Also, the mathematical formulation
constitutes at least one or two additional model types (which are not
included in this paper). However, the forwulation is quite c.iplex and,
as ackowleded by the author, appears not to be readily manageable in
practice. (For exaple, two nonlinear transfomtiona and two Integra-
tions, are genemlly required for derivation of the observation model
bypothesis.) Also, the initial h1potheses reuired may be =Ach more
appropriate to econoaic theo than to that of other disciplines.
Nevertheless, it is unfortunate that this work has not received more
widespread attention.

In this paper, we have particularly aspired to simple, es.ily
accertable, and manageable formulations for all model types. For
example, the "intersection-projection" transfo ation of this paper,
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effected by substitution, is essential to simple formulation where
models involve structural relationships. This device seems obvious
enough, as will become apparent. it is frequently applied ,Alitomatically,
without specific reference, in trivial cases. However, it has apparently
not been used previously in general formulations of the type here under
consideration.

In this paper, it is emphasized that distributinn- need not be
random; and here also, the proper use of systematic distributions is
indicated. A similar view on the concept uf random selection is expres-
sed by R. B. Braithwaite (1), 1953. However, there seems to be no pre-
vious recognition in the literature, and certainly no emphasis, that
existent systematic distributions, and in particular purposeful syste-
matic distributions (as in experimental designs), are appropriate and
frequently necessary elements in formulation of concordant sets of
hypotheses.

The definitive consolidation of work on unidentifiability was given
in a paper by T. C. Koopmans and 0. Reiers~l (7), in 1950. They begin
with recognition of the fact that a completely general formulation of
the problem of statistical inference must encompass not only observable
populations, but in consideration of errors of observation or other dis-
turbances, the theory or structure of the underlying true phenomena
which is thought of as generating the observed distribution must also
be considered. The problem of identification is then said to be that
of drawing inferences from the probability distribution of observed
variables to the mnderlying structure. This formulation, by Koopmans
and Reiersol, may be thought of as constituting a non-geometric, non-
operatiocal statement of the Basic Principle of the present system.
"Both expressions are closely related to the classic view on the influ-
ence of error as expressed by Gauss (13), pp. 1,2: that errors are
either constant (systmatic) or irregular (random), and that the con-
stant error cannot be estimated from the observations.

In addition to the above introductory contribution, Koopmns and
Reiersol go on to express in greater detail the general concept of
identification and to give emaples. Their paper makes two other points
which are pertinent here. First, we are warned (pp. :69-170) against
the temptation to specify models in such a way as to force identifiabil-
ity, since scientific honesty deandus that specification of a model be
based on prior knowledge of the phenomenon studied. Second, they point
out (p. 179) that even if all palatweters are not identifiable, At re-
maine possible to construct identifiable functions of these parameters
which constitute useful scientific information. Thus, the appropriate
direction of subsequent work would seem to be clearly indicated.
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In view nf the above background, it then becomes relevant to ask
wwhya workable and acceptable system of adequate generality hba not
been previcusly constructed. Several possible explanations come to
mind. Principally, the general necessity of resorting to specially
constructed calibration models and ultimately to actual calilration in
order to resolve problems of uniaentifiability in complex observational
situations hbs apparently not been recognized. The emphasis in the
literature .*s been on determination of those conditions neceasary for
complete identification in restricted situations. In this connection,

-refer again to Madansky (8). There appears to be no recognition that
the information required to verify such conditions must be obtained in
most cases by actual calibration. Further, any other means of obtain-
ing the needed information constitutes effective calibration. Thus,
it is perhaps a principal contribution uf this paper that calibration
(nr effective calibration), long regarded in classical error theory
as an essential feature in scientific method, as applied in simple
measurement situations, is here established as also essential in com-
plex observational situations. Complex phenomena are of course widely
employed as "controls" in experimentation; but these are trivial
instances of calibration.

This does not entirely explain the apparent premature abandonment
of generality in most of the literature. It is possible that preoccupa-
tion with pencil and paper analytic tractability has played a part.
Thus, it is appropriate to point out the advantages of computer-oriented
mathematics, particularly in avoiding problems imposed by the limitations
of the notation.

As is well known, the concept of state of control is due to W. 4.
Shewhart (12) 1939. Suitable introductory reading is provided by
Munroe (11), Mood (9), and Cram6r (2).

7H BASIC PRI~nCIP OF THE SYS=6

For purposes of this system, the phenomenon under observation is
theoretically represented by a distribution of points or events over
the Cartesian space of all variables (herein coordinate variables)
which are considered to be influential or otherwise of interest in the
investigation. It is demonstrable thit such a representation my be
mde. The distribution is generally bypothesized in the compact for'n
of a Joint density functions either over the ntire space, or over
appropriate subspaces. Tne exact manner in which such representation
is accomplished, for the most likely special situations, is resolved in
this paper. T.he gen~ral method is also discussed.
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Since the model is as density function, it serves to specify the
distribution of veig'it ur isse of potentially existent events over the
model space. In geueral, not all arguments of the d nsity function
are random variables;-some, coordinate values may be #,lected system-

atically In accordance with a prearranged experimental design. In-
other words, generally it is not a probability distributior which is
specifiei, if by the term "probability" we imply random selection.

Not all variables of interest, and which are represented in the
model, are also observable. Of special interest are the errors of
observation and the associated hypothesized true but unobservable vari-
ables which they modify. That is to say, we distinguish between observ-

able variables subject to the error of observation, epn tkfe associated
Anobservable variables in fact, which would be free uf error could they
be observed directly. Dencting actually observed values by subscript 0,
and errors introduced in the process of observation by e, the relation-
ship is as follows:

xo= x + ex

In this situation, all three variables are of interest and all

three are necessarily included among the coordinate variables of the
model space over which the phenomenon of interest, including those
aspects of the phenomenon which are exclusively related-to thE process
of observation, is hypothetically represented Thus, there exists a
subspace of those variables subject to observation. To these we nov

direct our attention..

The subspace of the observable variablea may be thought of as the
means whereby the phenomenon as represented by the model is revealed
to the observer. In the same wy that we might view the 3-dimensional
interior of a house through a window, a 2-dimensional aperture, the
suk .ipace of observable variables functions as a vindow through which
we may view the higher-dimensional representation. Indeed, by defiiii-

tion, no other avenue is available. However, it should be noted that
whet is observable by one method of observation (one set of instruments,
one group cf investigators, etc.) is not necessarily observable by
another. Thus, the same phenomenon might be viewed through a number
of different windows.

In this system., the method of viewing consists of projecting the
event mass image of the model from the model space of all variables of
interest, onto the space of observable variables. This is usually
accomplished by integrating out the unobservable variables. That is to
L,, for each point of the observable space, the distributed e-.ent mess,
as given by the joint density function model, is sunmed for all values
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Sh
of the unobservable variables. The resultant Joint mrgimt density

Sfunction serves to specify the dlstrlbution cf potentially observable
Sevents. '

' A precise anatogy, which is at the same time an actual e• .•,

l• given by. the process, of Xray photographY. Here the model is 3-
di•ensi<mal and consists of the object being .Fhotograpbed. The observ-
able sl•ce is a plane, the essentially 2-dimensional X-ray film. The
density function over the observable space is given by the distribution

Sof precipitated silver.

• The basic.principle.0f the system should be emp.%asized.

SPrinciple: The distribution of epparent events over the space of

Sobservable variables constitutes our total knowledge of the
real unobservabie universe, The apparent distribution is

S. literal• a projected image of the distributio• of real
, events over higher unobservable spaces.

v

ASSOCIATION OF •IEORY AND OBSERVATION

L , • -

SAs additional foundation for construction of the system, it is
Spresumed that quBntitative scientlfic knowledge is best advanced by

the following sequence, of operations:

I. Consider past theory and observation.
. 2. Formulate new and geneml•r incomplete hypotheses or models.

3. Employ obeervaticqal data in completing the one or more formu-
lated models.

' •. E•ploy addltloaal ubservatlom•l data in evaluating and ccmpar-

Stng the completed models or theories. L

SIn the event that complete models are •pothesized, the third operation

•y be dispensed with. Rowever, this is not gen•.rallM advisable, since
Sin many if not most cases, such a procedure would L•e tantamount to

guesswork. " "

SIt is preswaed that the Joint density function model will not be
i cumpletely specified but that, in consideration of past theory and

observation, only the mathematical form of the model will be hypothe-
sized. That is to say, the hypotheslzed density function involves
unknuwn constants, parameters to be evaluated in consideration of
oeservatiunal data not influential in formulatiun ofthe incomplete

model.

8



In t~his system, the Principle of wumxiim likelihood in suggested
as boing most generall~y acceptable fox, the purpose of evaluating or
estimating the un..uovn constants.* Given a set of observed points or
selectionis, the iiidividual events are presumed to be ind~ependeant in
the stochastic senz~e. Whether ox not obaervations or selectio~ns are
random,, it will subse~juently be,3een that the presumption is justifiable.
For each point observed, the observuble-event density is expressed as
a function of the unevaluated parameters. The product of all such
functions is the likelihood function, defined over the parameter space.
The product of independent event densities ordinarily yields the
density of the model space joint event. However, as a function of the
parimeters to be estinsted, it is said to express the likelihood of
the parameter space joint event.* The maximum likelihood parameter
estimators are given by the coordinates of that point-in the Parameter
space for whic~h the likelihood function is isaximiz~ed. However, as will
be seen, these eatiusates are not necessarily unique. Following eva'lua-
tion or estimation of the parameters, the cropletod model imy be coma-
pared to alternate theories., using likelihood as the ranking criterion,
anid the sae -data in sact. case.ý

DFSIG3MTION ov THE PHEI4DIN DsIBN) By TE moDm

Given a particular density function model, there is a question as
to whether or not the representation ban eaining. It has meaning only
to the extent that the phenomnon represented can be ot~herwise uniquely
designated.

We speak of the phenomenon which is the object of our investigation,,
the object phenomnon., as orn entity; thus we 1upIýy that its essence is
unchanging* In a sense, we pwesuim that the variation represented by
the smtbinatL al model is superficial variation, laying no influence
on the essential character of the object phenomnon. It is this es~en-
tial unchanging character whichmat be uniquely desiguated if the
quantitative description of variation is to be unambiguously interpre-
table. It Is therefore reasonable to require,, in addition to the
specifications of the satbomatic'~l model,, a chaeraterimation,, consisting
of a set of designating statements or classifications which, whenever
or wherever applitable, serve to effect the valid association of the
object phenomnon said its umathematical model. Thus, by definition, the
object phenomnoni occupies the class intersection.

In a g'-ven instance., the association is invalid to the extent that
the model fails to descz1~be the object phenomnon as designated.
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Assuming that the model parameters are so selected, according to the
iinitial data, that a good fit of the model to the observations is ob-
tained, it cannot be said in a later failure, whether it is the quanti-
tative hypothesis, or tie designating classifications, which are in
error. From one point of view, the quantitative model is inadequate
in that a source of excessive variation exists which is not represented.
Or alternatively, the original investigator was careless or unlucky in
that he f-siled to completely deeignrite the conditions under which he
r made his observations.

SFrom another point of view, a phenomenon which is adequately desig-
nated, or which is reproucible, is necessarily in a state of control.
A phenomenon inadequately designated, or unreproducible, is out of
control by definition. However, in t1* same sense that not all vari-
ables of interest are observable, not all significant classifications
are obvious. Where a state of control is not existent, it is theore-
t' cally up to Cthe investigator as to whether or not he will attempt
to account for the unrepresented variation by altering the form of the
mathematical model, or by placing further restrictions in the form of
classifications cn the phencmenon to which the model applies, and
thereby narrovirn5 the sc 2pe of the investigation.

It is generally the rzsatisfactory solution to correct a poor fit
by narrowing the scope of the investigation. It is better, if possible,
to interpret a poor fit as specification error in the form of the mathe-
mitical model. In practice however, the investigator may be deprived,
of the choice which is rightfully his in theory. If the phenomenon is
not in a state of control, that is to say not reproducible, then it is
possible that. a new mathematical model, so specified in form as to ade-
quately describe the observed variation, will not be useful for the
original purposes of the investigation.

Fron the above discussion, two things are apparent. First, it is
essential that models be reexamined under the widest possible range of
conditions within the limits imposed by the classifications. In prac-
tieco, experience with pyhnona similarly classified may justify socic
relaxation of this requiremnt. Second, the care taken in classifying
the object phencienon and in writing the designating statemeits, must
corriespond to the effort e.Tpended in developing and establishing the
quantitative theory. Tlase remarks apply with particular force in the
application of this system, since in its use we aspire to a high order
of discrimination.

In conclusion., at least one fundsmental condition muast apply in
ume of the system. We require in all cases that the object phenomenon
as designated be reproducible or in & state of control. More precisely,
we require that the finite set of observed events which are actually
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obtained constitute a r.'?resentative sample of a potentially inftnite
population of observations; specifically that population which is
uniquely associated with the object phenomenon as designated.

DISTRIJTIONS MAY rEoJ11 FROM EITHER RANDC14 C
SYSTEM4ATIC SELECTIC

It has been stated that in this system variables need not be ran-
domly distributed in order to be described by a density function.
Before this idea is put to use, it should be discussed in some detail.
In a given observationai situation, the values of a given variable may
be either purposefally selected, or they my occur as a uatura. conse-
quence of the phenrcmnaVnon under investigation; however, in either case
they may be either .-ndomly or systemgtically distributed.

The idea of random selection is historically associated with the
idea of a lottery, or blind selection after mixing of objects distin-
"guishable only by sight. The important characteristics, for the purpose
of this discussion, are first that the objects ae- contained and conse-
quently the distribution is stable, and second that mlxing is employed.
To say that the distribution is stable is to say that a state of control
exists.

The mixing idea is related to a subjective interpretation of pro-
bability as degree of reasonable belief. Participants in the lottery
agree that it will be fair if their mutual ignorance of future selec-
tions is assured; hence mixing prior to selection, or "random" selection,
is required.

If we also impose the requirement of replacement following each
selection, then the population of selections becees potentially infin-
ite and, in consideration of the m4.xing, the individual selections are
stochastically independent. Thus, at least in this case, the usual
acceptable conditions are established for construction of a simple
likelihood function.

However, in valid application of the system we require that the
object phenomenon as designated exist in a state of control. This
being the case, the ultimate finite set of selections (or sample) ob-
tained is representative & definition. The additional requirements of
random or stochastically independent- election are otlj incidental mane
to attain•-ent of that which is already provided. Once we are in pos-
session of a representative sample, the means of its t.ttainment are
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immaterial. We can arbitrarily treat the individual selections as hav-
ing been obtained under conditions of stochastic !ndependence, (and
form the likelihood function accordingly) whether or not such was the
case. Specifically, systematic or ordered selection is not invalidated,
since a representative smnple canbe reordered or mixed without affect-
ing either its representative character or the ultimate maximum likeli-
hood estimators. However, there is more to be said.

It is interesting to consider some advartages and disadvantages
with respect to random versus systematic selection in those situations
wherein the investigator has the choice, that is where selection is
purposeful. A principal advantage in random selection lies in the
simplification of the model that is its f-equent accompaniment. There
may be variables which are influential in the object phenomenon, but
which are not of interest in the investigation. The effects of the un-
wanted variation may be discounted by uniform random selection of ob-
servations over the space of the unwanted variables. For example,
suppose an investigator wishes to estimate the mean moisture content
of a carload of wheat. Suppose that the car is known to have reen
loaded in several batches, thereby imposing an internal stratification
of unknown structure on the carload. If the stracture is of interest,
then the spatial coordirste variables should be included in the model,
along with hypotheses concerning the form at the interfaces. Nothing
is wrong with this approach, except that the model is unnecessarily
complicated. In practice, observations would probably be taken at
random over the volume of the car, from which the sample mean moisture
content would be computed.

The question may now be asked as to whether a systematic uniform
selection of observations over the car would not be better. To ade-
quately cover the volume with evenly spaced observations, which are
sufficiently close together so as not to miss or otherwise give improper
weight to the individual strata, would probably require more observations
than would be noz lly required for a random sample. In another situs..
tion, cyclic effects might be adversely influential if the systematic
selection Is in phase. However, systematic selection can also be de-
signed specifically to either mask or detect cyclic or other systematic
effect$, particularly where additional information is available. In
fact, where economic and pbusical factors are not influential, it is
conceivable in any observational situation requiring purposeful selec-
tion, that A design for systematic selection of observations can be
found which is superior to random selection. Of course economic and
pbysical factors do intervene. If the investigation involved selection
of representative bowls of soup from a large container, it is certainly
more reasonable to actually mix the soup prior to ladling, re-ther then
to investigate the special distribution of the constituents in order to
achieve the dssired result through deduction.

12



There is asurely no virtue in ignorance f or its avni t3ake; yet ran-
dom se)ection is sometimes used when there is no compensating advantage.
Constaer a distribution of purposefully and systemstically ,elected
points designed to closely approximate the noruml or Gaussian distribul-
tion. If selection is properly done, the points my be plotted as a
smooth histogram. However., the distribution of the same number of
points, selected at randomn according to the normal distribution, and
plotted as a histogram, genera!3,v is a fairly ragged conxfiguration. -In
a situation where the selev-t4--, points are sse~a In an, estimation process.,
and wherein confidence in the .estimate Ls increased in proportion to the
extent that the selected poin. set is actually representative oýf a nor-
mal distribution, then the systematically selected poii±t set is to be
preferred. The additional noise introduced in randcom samrpling can only
serve t.o increase the variance of the'estimate.

In any case, for purpo.oes of the system, .v~distinction is made
between randomaly distributed variables and syste: .tically distributed
variables. With respect to the concept of' probab~lity, and to the
ýextent that it is found to be useful in applying the system, protabi!J-
ties ray be simply interpreted as objectively deteriniied measares of
degree of reasonable believabi. ity or con~firmation, Tc the extent that
application of the asystej,. reGu'tS Lin the generatiuri of su,.ch mea sures,
probability can be said to ae operationally defined.

MATI~MTICA THEDHY AND DISCUSSION

In the rensirxer of this paper,, it is the purpose to first discuss
the general aspect (if model construction in the contert of the. systemP,
then to ir-vestigate seve .1 useful model types and tu ryutiine the speci-
fic ateps in thnir const~ruction, and finally to discuss some aspects of

In t~ie usual prartical application of the system, an. investigator
is expected to select an appropriate sta~idard modAel type. For example,,
if his ultimate goal is the- ability to forecast a alngl..- random variable
e'.ent, lie will probably cnoos a regression. model. The ntumber of stand-
ard model lVpes my be increased vithout limit., but only the mo-St uav'Vul
types need be catalogued. Eventually., there should be a lm.rge number
from which the investigaltor my choose.

For each standard. model. type,, a computer prugrn shol hbe prepared.
Having designated the object phencvxe.on, formulated th? 11-?otf 'ses,
cpecified the ansociaced mathematical formsw, and collecte,! i~ii. C.Lta, the
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investigator employs the appropriate computer program in evaluating
the parameters. Resort to automatic mschine computation and informs-
tion processing not only eliminates the drudgery but enforces the de-
sired degree of standardization end objectivity in the analysis.
Ideally, the cow'puter should yield a report of the investigation, an
integrated presentation of the phenomenon as designated, the data, the
completed hypotheses, and other useful information.

SInitial lrpotheses

In most model types to be discussed, we distinguish between the
phenomenon of primary interest, namely the object phenomenon, and that
phenomenon which is the act of observation. The hypothesized true but
generally unobservable variables of primary interest, the object vari-
ables, are generally denoted

x l, X2 ,x n

"The mathematical representation of the object phenomenon is referred to
"as "the object model". Included in the, object model hypotheses, as
initially specified are:

1. Joint, marginal, or conditional density functions which des-
cribe the distribution of various subsets of the object vari-
ables.

2. Equations relating various subsets of the object variable,.
(If the variables, as specified free of observational error,
are naturally so related, the equations are said to describe
structural relationships. In other cases, they may describe
prediction or regression relationship..)

"3. Inequalities relating various subsets of the object variables.
"(Themse relationships serve as constraints on the distribution
of object variables. Theys specify the region boundaries, when
such exist, over vhich the joint density functions are defined.
Consequently they are part of the density function specificatioixs.

"4. In each of these funh.Aons or relationships, unevaluated pare-
meters G wili probably be involved; in which case, known or
Shypothesised constraints on the 0 are also included in the
initial specifications.

In most cases., the object variables, being unobservable, are speci-
fied free of observational error. Corresponding to the individu~al object
variablesare htpothesized but unobservable errors of observation. The
errors are denoted



e1 , e2 ,- . en'

The mathematical representation, which by hypothesis describes the dis-
tribution of errors of observation, is referred to as "the calibration
model". This distribution of errors is generally unknown; but the func-
tional form of the joint error density function, which my or may not
involve unevaluated parameters, is hypothesized. It is usually prefer-
able to describe the error distribution as a function of the associated
object variables. Consequently, the calibration model is generally
specified as a conditional joint error density function, an eoimple of
which is here denoted

Here, * is used to' denote density functions generically, while the spe-
cific. function is unambiguously identified by the arguments. 0 denotes
a vector of parameters to be evaluated.

For any fixed pcint (xl, ---- ,xn), the associated joint error density
is given by the calibration model. Thus, we say that the object vari-,
ables enter into the conditional error density function parametrically.;
that is to say, they are treated as constants.

It is appropriate to mention at this point that, although the den-
sity functions are not necessarily probability density functions, they
have the same mathematical properties. Given a density function *:

1. * is defined as event wass per unit of the distributed variable
space, for every point in the space of all arguwnts, including
those which enter parmsatricaUy.

2. # is everywhere positive.
"3. Event nass is additive.
4. * /Aal event mass over the distributed variable space is unit

MASS.

We are therefore free to maks use of the calculus of probabilities.
Specifically in the situation before us, the conditional joint error
density f,,.nction may be expressed as a ratio of two joint density
functions.

' .(e , -- , n/ l, ---- l -- -,nX ,- .- ,nOO
1* '



Here, 0 denotes a vector of parameters.

The observable variables, true object variables which are masked
or modified by the errors of observation, are defined and denoted as
follows:

• ~x O k = x k + e k k k , . . n

We refer to these as "the error equations". The term "error" is under-
stood to signify any influence or set of influences which serves to
mask or displace the value of an object variable. For example, an un-
known lag associated with a time variable may be thought of as error.

Ultimately, we are interested in an observation model, a Joint
density function morel over the space of observable variable's. In
application of the system, we propose to obtain the distribution by
projecting event mass from some hyperspace which includes the c-ervable
space as a subspace. In theory, it makes Lo difference which byper-
space is used, or how the hyrerspace model is initially specified.
However in irantice, certain rrocedures are more generally useful. For
example, it _s f(.and that initially transforming or projecting the
calibration model onto a space which includes the observa• le space is
a generally useful procedure.

The Error Transformation

Consaier the joint density function *(e 1 ,---,enx ,-P-,Xn). Event
mass is transformed as probability is transformed; that is to say, I%
P.ccor~ance with tie calculus of probabilities, the absolute value of
"the Jacobian of- the transformation ie used. Using the error equations
as the equationbi of .•ransformation, the transformation is linear, and
/J/ is alvays plus one. Thus, the transformation is effected by simple
substitution from the error equations into the density function.

,e --- P. ---

Dividing both sides of the resultins -qouation by the marginal density
*(XJl---M,,xn)) we obtain the desired conditional density function.
The transforuation l o denoted as fo'ulavs:

#,(el, --- .,en/Xl--..xn) -* (xO1,---JXon/X --,- lxn).



The geometry of the transformation, for one object variable, is shown

in Figure 1.

Surface Density Functions

Another generally useful technique in derivp.tion of the observa-
tion model hypothesi- consists of eliminating by substitution variables I
which enter parametrically into conditional density functions. The
s,:botltution is valid if the variable to be eliminated is a single-
valued function of other variables which enter into the fanction pars-
metrically. Geometrically, the effect of this operation is in two
stages. First, the joint event density function is effectively inter-
sected by the hopersurface of the single valued functicn;, then, the
S'onditional event mass, which is thereby distributed over the hyper-
surface, is effectively projected in the direction of the variable to
be eliminated, onto the subspace of the remaining variables.

For example, suppose th1t xi F (x2,---,Xn; 0). This is a struc-

tural relationship between object variables. We also suppose that Y"
is a single-valued function. Here again, 6 is a vector of parameters.
Given a conditional density function which is defined for all fixed
points of the xl,----,xn space, the existence of the etructural relation-
ship exclusively associates the density function with points on tl.e F-
surface, which is imbedded in the xl,--,-,xn space. Since F is single-
valued in the x, direction, the density function can be mapped one-to-
one (projected) onto the x 2 ,----,xn subspace. The subspace and the F-
surface are of the same dimensionality, of course. It is not recessary
thet F be single-valued; but structural relationships can usually be so
specified, and a mapping which is not one-to-one can result in a signi-
ficant loss of information.

If the conditional density function is the previously discussed
calibration model, the F-intersection is executed as follows:

(e,,- ,(e ,---,en/F(--,-exnPO),x2,'--,x ;'0

" * (el, "--.. en/X2, --- x n; , P I; F)-

Functions of this type may be thought of as generalized or "surface
conditional density functions", over the F-surface imbedded in the
original e --- ,enXlX 2 ,--,Xn 513ce.

Oe denote this transformation in either of two ways: either to the

"surface conditional ueasity over the F-surface imbedded !n the higher
orl.ginal space,

17



I& eI

Fig. 1, ifluatratling the OeomtrY of' the Error Tz'snuforat ion

*(e/x)-. (Xd/x)
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S(el,._,,--en/Xl,_..,Xn;O) * (el,...•e n/)ý2J',..,xn ;8.,;F)m

"or if no confusion results, by projection to the ordinary conditional

density over the subspace.

S~..

The geometry is shown in Figure 2.

Concordant Hypotheses

We now consider an important criterion in the construAction of any
model. It is necessary that the model components, as initially specified,
provide sufficient irformation for derivation of the observation model
hbypothesis. In general, the observation model is a joint density funceo
tion over the space of observable variables. Consider that the number
of ways can be very large in which a joint Jensity function can be rep-
resented as the product of marginal and conditional density functions.
For only three variables, there are thirty ways. Also consider that
the observation model joint density function or any of its potentially
numerous factors must be ob+ained from the originally specified model
components, some of which are also joint density functions, by an,
initial.y unknown series of transformations or projections in accordance
with the system concept. Further, the conditions of the investigation__
usually predetermine some of the initial model specifications; imposed
combinations which may be awkward in the analysis. Thus, included in
the general problem of hypotheses formation is the not generally insig-
nificant problem of satisfying the sufficient information criterion.

Overspecification, or too much information, is no less of a prob-
lem, since it can result in an inconsistent, or at best, an inadequate
model. Thus, a set of initialiy specified model components is required,
vwhich is sufficient for derivation of the observation model hypothesis,
and which is also necessary to the goals of the investigation. Such a
set wlll be called a "concordant set of rypotheses". A principal prob-
lem in nodel construction is, of course, selection of the appropriate
concordant set.

Available Techniques,

Having inJtially specified a concordant set of hypotheses, the
stated immediate goal is derivation of the observation model hypothesis.
In general, we wish to combine the initially specified model components
in such a way as to eliminate all unobservable variables and to retain
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F~ia. 2 Il-lustrating the Intersection-Proje cti on Transforut ion

*(zIx;le;?), Projection..
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all observable variables. There are eight manifest techniques which
might be used if the occasion demands, and there is a naturally imposed
order of precedence in their use:

1. Exclude the unobservable variables from consideration in the
first place. This presumes that their influence can be justi-
fiably neglected; otherwise a specification error ia introduced
thereby.

2. Eliminate unobservable error variables by the one-to-one error
equation substitution transformation. Of the eight operations,
this induces the greatest gain, for the effort expended.

3. Eliminate fixed or "given" variables of a conditional density
function, variables which enter parametrically; using single-
valued functions of other given variables as the equations in
a one-to-one intersection-projection transformation.

4. Eliminate unwanted variables by using a non-linear one-to-one
transformation; mapping into a space of variables not previ-
ously involved. This presupposes the prior availability or
specification of the appropriate transformation equations,
equations representing monotonic surfaces.

5. Use a more complicated variant or generalization of the third
technique, whenever the available relationships are not single-
valued. It is necessary to partition the surfaces into regions
of single-valuedness, and to sum the resultant individual pro-
jected event densities. This subqtitution transformation,
being many-to-one, results in some loss of information; how-
ever in proper use, this would be the necessary loss incurred
in viewing the hypotheses from the limited perspective of the
observable space.

6. Use a more complicated variant or generalization of the fourth
technique, whenever the available equations represent surfaces
which are not monotonic. In such cases, it is necessary to
partition the surfaces into regions of monotonicity, such that
the resultant transformation is many-to-one, specifically not
one-to-many. The resultant individual projected event densi-
ties are summed in the new space. This is ordinarily the most
general technique applied in transforming density functions.
However, it is not always possible to avoid the one-to-many
partitioning; for example, the transformation surface -Jy be
a hypersphere. There are many interesting 'jays of dealing
with such situations; they all require additional hypotheses.
In the case of the h~persphere, projected event mass could be

21



allocated to the near and far surfaces, either in a fixed ratio
or in a ratio which is introduced as an additional parameter
to be evaluated. Either specification constitutes an additional
hypothesis.

7. Eliminate variables by intersecting a joint density function,
and projecting the surface distribution of joint event mass
onto an appropriate subspace. This is a further generalization
of the third and fifth techniquies.

8. Eliminate the influence of unobservab3e variables from Consider-
ation by integration. Sum the event mass over the entire space
of unwanted variables, in order to consider only the projected
marginal distribution in the subspace of observable variables.

With prc,-r application of these techniques, the obsermticn model
hypothesis is derived. However, the observation model is still incmn-

Splete, as are the object model and the calibration model, in the sense
Sthat there are parameters to be evaluated or estimated.

The parameters are the e and 0 vectors, of the object model and
the calibra'ion model respectively. There are of course other Ways ir,
which parameters my be introduced in the hypotheses. Some will be
discussed; trey are here denoted E. Now, given N observations, the
data are: (xlc, X0 21j,-',,-xoni),i=l,,-.,N. The likelihood function
is given by

N7r -

The likelihood is usually maximized by maximizing log L. That. is to
say, a point is found in the parameter space ofO,*, and t, subject to

possible initially Iypothesized constraints, for which log L attains
its maximam value. Of course, N mt at least equal the number of un-
evaluated parameters in order that they be determinate. However, we
are specifically concerned with those situations wherein observations
are not in short supply and the parameter values are consequently over-
determined. Thus, in the presence of sampling variation and specifica-
tion error, the parameter values must be estimated. Actually, many
difficulties can occur in obtaining the maximum likelihood estimtes,
so the subj•-t is dealt with separately later xx,, and practical methods
are indicated.

The values obtained for the e, 0, and J may now be used to complete
the associated models. The completed object model may now be sai A to
provide the best description of the object phenomenon as designated,
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"consistent with the lkrpotheses and the data, according to the principle
'of maximum likelihood.

Also consider that the errordistributilon phenamenc can be the
phenomenon of primary interest. The maximum likelihood t values yield
the completed calibration model. However, in cases where the calibra-
tion model is constrained by the object model hypotheses, its use should
be suspect for points in the space of object variables which are not
in the immedkate neighborhood of the object phenomenon events.

It is interesting to note, in application of the system gencrally,
that rounding off of observed values to the number of digits known to
be or suspected of being significant can result in loss of information
which is necessary in precise evaluation of the parameters; in particu-
ýer where errors are relatively small but significant. Observations
should probably be recorded to the maximum precision obtainable from
the observational method in use. This is clearly contrary to existing
praccice in many observational situations.

Purposeful Distributions f

As-the final topic in this general discussion of model construction,
consider that it is frequently necessary to purposely impose a distri-i
bution where none occurs as a naturalconsequence of the phenomenon
under investigation.: The distinction between purposefully distributed
variables and naturally distributed -.ariables is useful in the discus-
sions of various mo~ql types to follow. This distinction is solely for
the convenience of the investigator, and is of no theoretical or philo-
sophical significance not previously discussed. The act of purposefutly,
distributing or weighting a subset of variables, observable or otherwise,
simply imposes on the investigator the requirement that the distribution
be separately specified in the object model. An alternative is to con-
sider that the purposeful distributt'on is a stated condition which
serves to designate the object phenomenon. This last procedure neces-
sarily restricts the scope of the investigation; nevertheless, it is
sometimes appropriate. For exmnple, consider the situation wherein
there are variables in which we have no interest. Then the object
phenomenon, as desig ated my reasoiably involve purposeful uniform
point selection, either random or syltemtic over the space of the un-
wanted variables, in order to simplify the model specification.

However, in general, the most useful procedure is to treat the
purposeful distribution as a separate but :.nst.tuent phenomenon, sepa-
rately specifying the form of the density function and, if necessary,
evaluating its parameters either separately or concurrently with the
object model parameters. Since, by definition, the functional form is
under the direct or indirect control of the investigator, specifiostion
error should b minimal if not non-existent.
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Purposeful distributions are most likely to be directly observable,
although this is not necessarily the case;ý therefore, it might seem most
reasonable to specify purposeful distributions over the space of observ-
able variables. Unfortunately, many useful object model components,
taken in conjunctior with a directly specified observable distribution,
are not likely to form a concordant set of hypotheses. Consequently, it
is frequently preferable to specify the purposeful distribution over the
space of the associated object variables. An important exception occurs
in regression and prediction models, where thc specified object vari-
ables can also be observable vartablen.

MODEL T1YPES

7rpe I Model: Simple Measurement with Errrr

In this first and simplest of all observational situutions, the
phenomeron under Investigation, by hypothesis, is represented by a
single point (0l,02,----On) in the space of object variables, the coor-
dinates of which, the Oi, are the unknown parameters to be evaluated.
These hypothesized true but unobservable values are masked )y the errors
of observation. In other words, we-wish to perform a simple act of
measurement involviag error.

-For clarity, but without loss of generality, the system is illus-
trated first for a Trpe I model of two object variables. Thus, the six
variables of interest which define the model space are: x1, x2 , he
object variables; el, e 2 , the corresponyi!ng errors of observation; and
xOl, xO2, the observable variables.

The -.bject model is given by the equations:

SI e; X2  e2

These equations are structural relationships. 01 and e0 are the object
model parameters, constauts to be evaluated.

"The calibration hypothesis is appropriately specif'd as a condi-
tional joint error density fu:;ction as follows:

Again €P is a vector of unevaluated parameters.:
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Having formulated the initial hypotheses, the imnediate concern is
with derivation of the ubservation model hypothesis. Tc this end, the
Initial hypotheses must be combined in such a way as to effect elimi-
nation of the unobser-.ible mariables, and introduction of the observ-
able variables. Geomctrically, we wish tu project the combined-model
avent mass distribution from the model space, or its subspaces, int-
the subspace of observab]e variables. First the error equation trans-
formation is applied.

Thus, the joint distribution of observable values is given for any
fixed point (xlx 2 ) in the objtect varia'ble space. However, by our
lhpotb(sis, the object model, the phenumenon of primary interest, is
restricted to a single point in the xl,x2 space, namely (o1 ,2).

Geometrically, at this stage of the dvrJvation, the model is a
joint density function, defined over a plane which is imbeddt• in the
4-dimensional xoi,XO2 ,x- ,x 2 space. The plane is the 2-di.mensional
intersection of two 3-dfmensional 1\vperplanes, which are defined for
xl=8I and xZ=e 2 respectively. The joint density function is given by

Tlhe expression does not involve x1 and : 2 ., Consequently, we choose to
ignore tha. 4 -dimensioral environment of the distribution; but in doing
so we effect the desired one-to-one transfornation, or projection int.
the 2-dimensional subspace of obsez-vable variables. Thus, the deriva-
tion of the Type I observation model hypothesis is accomplished.

The likelihood function can row be formed, ind the param.te, esti-l
mates obtained. The valuos obtained are denoted #i' 02, and $. 0i and
62 complete the object model. The $ values obtained, complete the
calibration model. However, the calibration mo a.l is suspect for
points of the object variable space which are not in the immediate
neighborhood of (91, 92)-

In conclusion of the Type I model discussion, note that this 2-
dizmenrional derivation is symmetrical with rerpect to the object vari-
ables; consequently, it extends readily to any number of object vari-
ables. Fcr simplicity in the discussions to folliv, veritzbles which
are symretrically treated in the derivation are represented as vectors;
In fact, all model types as represented are exue~aded to any number of
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dimensions in consideration of the indicated variables as vectors,
Thus, the Type I situation and that of other model types are also pre-
sented without explanation in a more compact schematic suitab]r illud-
trated for converient reference.

In the Tyrpe I illustration, the conditional error distribution is
indicated by contours of equal event density superimposed on the space
of the object variables. This superimposition so serves to indicate
the appearance of the distribution of observed vab-es over the observ-
able space, which my also be thought of as superimposed; and appro-
priately in this case, the cooL--inate axes coincide. This superimpo-
sition device will also be used in depicting the situation for other
model types.

IZype II Model: All Object Variables Distributed

"MTe Type II model is characterized by the fact that all object

variables are distributed by hypothesis. That is to say, the object
model involves ape-ification only of a joint density function, or its
marginal and conditional density function factors. The Type I model
is actua.lly a trivial special case, wherein the specified distribution
assigns all of the event mass to a single point.

The Type II illustration shows the case of two object variables.
The initial hypotheses and the derivation of the observation model
hypothesis are both presented. The generality of the vector notation

should be cousidered. Any number of Type II variants are admissible
thereby.

x . ... 9 --- X

2. *(x) #(xl,---,xn)

3. *(xl,---,x•) need no; be specified directly, as a single joint
lensity fw .tion; but may be specified in factored form. For
example: *(xlr--,,xk) *(Xk+l, --- ,xn/xl,. X0k).

4. Each of the factors may be either a purposeful distribution or
a rutural distributiom. (In an investigation devoted exclunively
to calibration, all factors might be purposefulLy distributed.)

Of particular interest is that spe-.Jal case wherein a subset x, of
object variables, is observable directly without error. 'Li~st is tolsay,
ex:-O. Let y denote those other object variables which are subject to
errors of observation. Then the initial hypotheses are #(x,y;e) and
* •(ey/x,y;$) (ex�,ey/x,y;4D). The derivation is ns follows:
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TYPE I MODEL: SIMPLE MEASUREMENT WITH ERROR

e, pin (A- W96

X,

'Objec.t Model 1 0 1.
Calibration Model (CeAI x: P)

Derivation of the Observation Model Hypothesis

e. •(c,?xoQ -- 4(x0 1x; •)

. ,(X0 Ix; (p -- (X0; 0,10)

Observations X0o -- (X01 , ......-- x) , - 1,---.. N

Likelihood

N
,L 11 4(Xo1 ; 6,4)

N

log L = log (xoi; 0.0

N A

(log L),,,, log 4;(xo,; 00,)
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*(ey/xy;O) -. (yO/Xy;O)

,(x,y;e) *(Yo/x,y'•) -" W(yoxy;e•)

However, x xo, so that

and finally

L *(Y0 ,x 0 ,.y; e,0)c:y =(Oy~'

Type III Model: Structural Relationships

TheType III model object variables are related to each other in
the initial hypotheses according to one or more specified equations.
It is also stipulated here that the variables, as specified, do not
include or involve the errors of observation. As previously stated,
such relationships are known as "structural relationships".

The relationships are presumed to be single-valued in their respec-
tive y directions, as indicated in the Type III schematic. It is usu-
ally the case that such single-valued representation c'an be specified.

In the intersection ope:..ation (Derivation 2), whenever more than
one structural relationship is involved, it !s of course most expedi-
tious to so order the substitutions that no variable is reintroduced,
after being previously elimina'ued.

In addition to the specified structural relationships and the
calibration modelo a joint mtarginal distribution *(x), or its consti-
tuent factors must be blpcthesised, as shown in the Type III illustra-
tion. This marginal distribution specification is necessary in order
to obtain the conecrdant set of kypotheses. In the usual situation,
we would expect thLtt all nf the x object variables would be purpose-
fully distributed; but this need not be the case. Components of this
marginal distribution my occur naturallj and be of interest in the
investigation.
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TYPE 11 MODEL: ALL OBJECT VARIABLES DISTRIBUTED

x x. .. ~
e2

X2

Object Model .(x, 0)

Calibrotior, Model 4(e. X;' I

Derivation of the Observation Model, Hypothesis

3. f 4(xo,x; 0,4~dx - 4(x0; 0,0$)

LUkel ihood

N
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TYPE IIl MODEL: STRUCTURAL RELATIONSHIPS

x

Object Model

1. Joint Marginal Density Function 4 (X; ~

2. Structural Relationships y F (x, 0)

Calibration Model 4(5 ,e7 xyI .; 4')

Derivation of the Observation Model Hypothesis

1. 4b(e, 9eyl x,y;'Z(A) 4(x 0,y I x~y; (P

2. 4 (xo,Yo IXY,O) 4(x*,y0 I X; 0,0); F)

3. ik(x; 4) O(x,yg lX; 0,0J) 4(xo,y09x; 00,4',)
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Prediction

Frequently, there is less interest in the theoretical structural
relationship which underlies the errors of observation, than-there is
interest in predicting observed values y for given observed values X__
In such cases, the usual. practice is to ýVpothesize no error in x. ikus

*(y0 ex~y;,&) *(y0/xe,y;0)

but x x;so

The prediction function is then given by

This is ordinaril~y considered to be a kind of regression; but here
we call it "prediction". Thp rme "regression" is reserved here for
cases involving no underlying structural relationship.

Zpe IV Model: Regression on Observable Variables

In those analyses wherein all variables are distributed under the
initial h~ypotheses, and wherein it is desired to describe the most rep-
resentative or mean values of each of a subset of observable variables
yoas single-valued functions of the remiiting observable varlablezz

x x,0 (i.e., the x are free of observational error),, we will say tkat
the development is a case of "regression". We sa tilt the single-
valued functions are "regression relationships". They are defined as
follows:
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S-- F(xoe) 0A

The necessary constituents of the object model are a joint condi-
tional density function, which in general is given by *(y/x;e), and the
structural relationships x x0 which are also included as a consequence
of the model type definiticn. These necessary constituents together
with the calibration model completely determine the regression rela-
tionship set YO F(xoG)" ConsequentlY, the problem of selecting a
concordant set of initial hypotheses is not trivial. The derivation
of the observation model hypothesis is shown in the schematic.

The joint mrginal density function of the directly observ-
able subset x0 or any of its component factors nay or may not be of
theoretical interest. Since this distribution enters into the observa-
tion model simply as a factor, and sint-e it is directly observable and
therefore may be purposefully and completely specified initially, it
(or any of its component factors) can be entered into log L as an addi-
tive constant. As such, it has no influence in the maximization, or
ultimately on the values • and .

In common application of regression analysis, no calibration model
is specified; there is no error in the y variables and therefore

*(yV/x 0 ;e) * (Y0 /X0 ,eq)

Also comonl.y, this conditio•al density function is initiully lypothe-
sized for a single yo variable and is usually specified as normal:

,(oy, a0) O N [,F(xo,), ao /x 0

Further, in ordinary application of regression analysis, the observable
Joint marginal distribution is not of theoretical interest. Also OyO
may be thought of as constant and ignored. Thus any specified funt-
tional form for the regression relationship is concordant, and the
process reduces to curve fitting according to the principle of least
squares:
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TYPE IV MODEL: REGRESSION ON OBSERVABLE VARIABLES

N ROL 329 63

01

Ckject Model

1 Structural Relationships x X

2. Join: Conditional DensityLFunclion vIx.)

3. Observed-Joint Marginal Density Function 4 (x0. ~

4. Regression Relationships ST- F(x0,O) yo 4 Y(yo x0 .O)dY 0

Cal ibration Model, 4(e2,eyIx'y; 0 4 (eIxy X'P)

Derivation of the Observation Model Hypothesis

4. 4(X09y; 0,4) (yolxo~y; 0) 4'(X0,y0,y; 0,-PA)

6. 4 (x9yo;0;, 0.4) = 4(x0; 4 )4(VolXo; 0.0)~

Likel ihood

log L 2;log 4 (X01;, + 2:log 4(yo~x,. I X01 ]



N-

(log L)M lYog[ rAe 2S - 1
Si YO ,YO

yory
or N
Q(loy L) = [Yoi F(xoi, 2)]P, for constant a

(lg in 01 i0

Type V Model: Discrete Distributions

In general, for the various model types discussed, the indicated
distributions need not be continuous.. They nmy be specified only for
a rinite number of values of certain of the variables. Suppose that
certain variables x Y (,-,Xk,--,Xm) by hypothesis assume a number

q(k) of values tkJ That is to say, for each xk

xK tkJ .l,----,q(k)

In the manner of the Type I model, these are structurul relationships.
Hovever, since each variable assumes a aiultiplicity of values, the
individual surface distributions of event mas must be summed in pro-
jection, according to the fifth of the previously listed available

Stechniques.
For exaWle, consider a Type n model. Suppose that

where

hkr*, the are the discrete set of x values, vhich may or my not be
)mwn initially; and the Yj are the co2 esponding set of marginal den-
sitiet, which may or my n&tbe known vlrtially. Thus,

g indicating implicit ja ts. Refg 7rrin o the Type r schematic,
ve also hive



*XyoXYO *X,(Oxoolj~y;o)

Consequently,

However, we do rnot proceed exactly according to the Type II derivation;
given the q structural relationships, which geometrically are repre-
sented by constant hyperplanes, the situation calls.for a series of q
intersections of the joint event mass distribution defined by the above P
joint density function. This is in application of the seventh of the
previously listed available techniques. The resulting set of q surface
joint density functions is given by

As stated, the associated projection transformation is nany-to-one and
the densities must be summed in-the subspace. Thus •e proceed.

where

The last step is simply to project into the observable space:

In some situations, it is expected that otbhr nonconstant struc-
tural relationships will also be specified in the manner of the T'pe II
model. The effect, in such cases, is simply to require the additioAl
associated intersection-projection substitution transformtions in the
derivation process, provision for wvdch is indicated in the Type V
schematic. The additional structured variables are denoted Z. Two
specialized Type V situations are shown in the illustratlons.
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TYPE V MODEL: DISCRETE -DISTRIBUTIONS

x A '1 I I

Object Model

I Joint Marginal Discrete Density Functions5

2. Associated ýX Volvo Discrete Set, Constant Structural Relationships

X-k 4t, j

3. Additional Nonconstant Structural Relationships z F(xy)

4. Joint Conditional Continuous Density Function 4ý(yr X ,,)

Calibration Model 40(e.,e,,.6Ix,,yZ,; 'A

Derivation of the. Observation Model Hypothesis

2. Oee,,ed xjy~x ; P) d' *(x,,3'; XJyz;

3. 0Qco'y0,Z0IXJqYqZ; (t) 4(xo'yo'zolxJy; 09w; F

4. 8.11 0((x'y0 ,z0 ,y; ; 0,W ~x 1 0,z,; ,Pi.

or 0(x0,y01 z0; O,4',W"fl, 77j1 4(x0 ,yo.0'1x, =t 0,0 ,@W)
J=1
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Attribute Distributions

SThe generality of the 'ilype V model is considerably extended if we
consider that the x need not be quantitative variables but that the
discrete "values" they assume ray be qualitative. That is to say, the
xj May represent attributes or classifications, of which the relative
likelihoods or weights,the Tjare under investigation.In such a case,
the E, are merely impli(it qualitative parameters. Thus, the observation
model bypothesis it given by q

(x'Y,y0 z(0 0;,'Wcrr) j [ ~ ~(Y;ej) *(yc z /Y;O jUwj)r
LJ=1 ýjiC

or q

q ,.
*k n'*jyo~z;,~f)0 1 Y,z eYA

S" " . . J=1

Type VI Model: Constrained Distributions

As preriously stated, inequalities which are specified in the
object model describe region bounda-ies of th- object model distribu- £
tions. For this reason, we refer to these distributions as "ronstralined

distributions"; and the ordering relatiOnships are called "constraints".

The constrained distribution models which are considered here may
&iso involve structural relationships. Such situations are dealt with
in the derivation schematic, but are not included in the Type VI illus-
tration.

The constraining surfaces are denoted YTr G(x.e). In general the
requirement that parameters w be evaluated, introduces great difficulty
in computation with numerical methods currently available. However,
for constant surfaces Y-M. there is no particular trouble. Also, the
problem is resolv I coumpletely if the integration can be performed
analytically.
.•pe VII lodel: Variform or Discontinuous Models

For models of this type, various regionsI of the model space are
represented by constitut.-' elements of the model which are dis-inct in
mathenatical form. The regions are separated by specified cont.tralning
surfaces. The constraining sureaces in thia case are called "shocl
ronts", or in the one-dimensional case, "shock points". For example,
ar meltiM point :,r a boiling point is a shock point; in me+eorology,
storm fronts ot air-mass boundaries are shock fronts.
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TYPE VI MODEL: CONSTRAINED DISTRIBUTIONS

'P¶X, Y.

Object Model

I. Joint Density Function 4xy~

2. Structural Relationships z F(x.,v,O)

3. Constraints y G(X, w)

Calibration Model 4,(e 1,,e,,e I X'y~z; 0)

Ue~ivation oif the Observation Model Huypothesis

1. 4,He..e,,ex,OXY,,z; 0)- 4(Xo,Yg Zolxoy~z; A~

2. 4(x4,,VozoIx ty A 00) - (x0.y0s0Ix,y,, 0,(P; F)

4. ~ ~ ~ y f f (oY.cXYO4~)yJd 4(x09y0,z0;O,~t,PAw))
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Two Ty'pe VII illustrations are used., to show examples of both
change in the form of joint density functions., and clunge in the form
of structuxal relationships. A more compact notatioi. tiun that of the
-previous model type has been adopted in the derivation schematic for
convenience.

The same computational difficulty, as in the previous model type,
may be expected here if the w require evaluation.

Indirect Observation,

F"irst consider a simple measurement situaion, suc~h as that of the,
TIype I mrodel; except that one variable, which is not subject to obse'-,
vtti~n., with ur vithout the influence of errors of observation, is
d~eterrninec only, as a specified single-valued fu~nction of the remaining
variables. Under this 1tjpotm.osis, a-11 of-the variables assume consta~nt
'va'ues, the determination of which is the object of our effort; but
speýcif icaJ).y -we wish to obtain that numerical value which is "only in-
dire ctly) observabic".1

It is helpful to refer to the Type I illustration and scheatic, in
obzerving that no amount of observation can provide information about
the single-valued f.±nztional relationship. The functional form must
be specified completely Jn the initial 1Iypothesis. However, estimtors
of the hypothesize-d constant values of ~those variables subject to ob-
servatton (and also error of observation) are obtainable through appli-.
cation of the TIype I model. But most important, it is knovn that
single -valued functions of mximun likelihood euti~mators are also
maxi-mum likelihood estimators.. Consequently, the desired maximum like-
lihood estizzator, for thst constant not'subject to observation with or
without error, is obtained indirectly by simple substitution of the
available estir, itors into the completely specified single-valued func-
tiion.

Similar cons iderationto apply in mapping distribwAcois, one-to-one
or many-to-one, from~ sajcec -)f which all vaw iables 'are subject to
observation with or wi.il out !rror, onto spaces the variables of which
include-one or more which are only indirectly obsei~vable. The ordi~nary
transformation of coordinates is Invoked, and parameters of the new
dofstribution, which are determined thereby, retain the m atmum likeli-
hoouey properties of thebprimary edinmtorso However, tion equations of

transformation must be completely specified.

Other Model Typpes

T]_ previously dihcussed meodel types no doubt enco.pass a signifi-
cant frection of observational uituations likely to arise; however,
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TYPE VII MODEL: VARIFC.M OR DISCONITINUOUS MODELS
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many situations can arise towhich the available model types do not
readily conform. For example, the various models may be combined in
configurations of great complexity; also, it will probably be expedient
to select certain special cases for particular emphasis. To a lesser
extent, it may be useful to strive for greater generality. HopefuJ2ly,
the number of available useful model types will grow continually as
experience is gained in application of the system.

In a large class of observational situations, not ill events which
are potentially observable are actually observed. Thus in general,
there exists an "attenuation fUnction" or "effiLiencj of observation
function", (, defined over the space of object variables. In such
cases, the object variable joint density function becomes

Sq•',(x) a (x).*,%x)

As a final remark, in combining the various model types into more
complex configurations, whenever possible it is better to evaluate
paramete-rs of all constituent hypotheses at the same time, in a single
observation model.

MOBLEM4S IN COMPTATION

So far we have carefully sidestepped the possible problems of com-
putation. In construction of the observational model, difficulties
can arise in nonlinear transforma+ions and projections requiring inte-
gration. Following construction of the observation hypothesis and the
likelihood function, the problem of maximizing log L is encountered.

With respect to the problem of integration, presently available
methoda appear to be inadequate for the task at hand. The must useful
system applications will probably involve integration over regions of
S,•.&, dimensions. Classical methods are accurate but require excessive
computation in the higher dimensional cases. Monte Carlr methods are
probably too imprecise for most system applications.

For maximizing the likelihood, there are several useful techniques
available; principally the Newton-Raphson method for solution of simul-
taneous nonlinear equations, and direct search methods such as the
method of steepest ascent. However, it is more probable that new, more
powerful methods wvAil be required.
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It is our stated purpose to employ automatic computing machines for
most expeditious application of the system techniques. Thus, although
analytic solutions may be feasible in some cases, numerical methods are
to be preferred for the generality of their application in automatic
ccuputation. However, application of numerical methods for integration
in the model derivation and for maximization of the likelihood imposes
the requirement that the two (or moxe) techniques must be effected
simultaneously. This compounds the di'ficulties considerably.

These considerations have led this author into an investigation of
numerical methods suitable for use in the system applications. The
basic idea is to partition the multi-dimensional region of interest by

aseries of eu@ An th --.-~ r-------------------------- V eO

by a number (usually large) of subregions. Prior to each cut, the sub-
region to be cut and the direction of cutting are selected according to
appropriate indices. Alternatively,s an index for termination of cut-
ting is used in place of the subregion selection index. The resulting
subregions are then represented by a selected point set. Operations
on this representati'e point set can then be performed to effect the
solution of a wide variety of multivariable numerical analysis problems,
including integration and direct search optimization.

The principal work to date has been in the area of multiple inte-
gration. The problem of non-variables-separable functions has been
resolved by selecting as the representative point fir each subregion,

the intersection of (n-l)-dimensional mean value surfaces, where n is
the dimensionality of the region of integration. Thece methods have
met with considerable success. The method of integration is presently
programmed for an IM-704 computer vi.th a 4000-word magnetic core
storage. Multiple integrations can be performed for functions of up
to ten variables. For example, the integral over the unit interval of

EXP(Xl.x 2.x 3.x1 ) has been obtained to better than six significant digits
of precision in about seven minutes. For this result, 32,455 points

I and 1,930 subregions were required. Considerable improvement Is expec-
ted if more core storage is available; in particular with respect to
increasing the speed and, the upper limit on the number of variables.

With respect to the problem of simultaneous integration azd maximi-
sation, developmental work is in preress. The epproach used is to
generate a representative set of points aa above but over a higher
dimensional space, which includes as subspaces both the space of v-ri--
ables over whIch integration is to take place and the parameter space
awsr which maximiation of the likelihood is to take place. In the
parameter space, the selected index for cutting is the likelihood value
or its logarithm. Subregion midpoints may be used as representative
points in this space. Integration is best held to relatively low pre-
cision, except for points in the immediate neighborhood of likelihood
maximum points.
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For the purpose Pf exploring multidimensional surfaces, such as the
likelihood surface, a representative point set is particularly valuable.
Localized maxim or saldle points are not likely to be mistaken for the
absolute maxima. Also, singularities and discontinuities tend t;o !e
readily detected. Such a characterizsteon of the likelihood surface
should probably be reported out as auxiliary information. It could
find use in future decision theoretic applications of the model as
developed.

In any case, it is hoped that the capability for solution of the
system computation problems will soon be available. This author's
work* is in preparation. Perhaps themain point to be made at this
time is not that the methods proposed here for computation will nec*..s-
sarily be those which are ultimately best for the general system appli-
cation, but that whatever methods are employed, they must be bas&! on
computer-oriented mathematics.

Specifically, the methods to be used in ccmputation must not be
based on pencil and paper mathematics. It is inconceivable that inveG-
tigators can ever hope to deal with problems at a practical level of
"onplexity, if they are to be restricted to the present-day pencil and
paper analytic techniques. One is led to believe that a new kind of
:mathematical analysis must evolve, which is exclusively devoted to
ccmputer-oriented mathemiatics,.

"Also, if our goal is to see our new mathematical methods actuall&y
put to use on a broad scale, it is necessary that most of the labor in
application be removed. Investigators generally do not aspire to be
also mathematicians. They will1 not be disposed to accept and apply
elaborate new procedures, unless they are also attractively packaged
and automated.

UNIDTIFLIABI~fl

Throughout this paper we have emphasized the Basic Principle of pro.
jection into the observable variable space. At this point, we con'ider
the consequences with regard to that informntion which is necessarily
lost in projection.

In the usual practical situation, it is not possible to uniquely
determine (or estimate) some subset of the real event model parameter

*See "A Methodolcgy for Numerical Analysis of Functions of Many Vari-
ables, with 1k.'phasis on Multiple Integration", by J. W. Hendricks.
(Technical Report to be published%.
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values. A parameter is said to be "identifiaole" if and only if a
unique value or its consistent estimate is obtainable, given full know-
ledge of the distribution of observations. In general, unidentifiabil-
ity is due to the loss of information in projecting the distribution of
real events into the apparent event space of observable variables. How-
ever, in trivial instances, a case of unidentifiability in effect can be
caused by specification of superfluous parameters.

The concept of identification my be more clearly explained by means
of an example. In considering the error equations, it is evident that
for each observed event xO, there is an infinite class of possibly true
event pairs (x,ex) which could serve to explain the observed event. It
follows that for any given distribution of observed events *(xo), there
is an infinite class of joint density functions *(xex) which could have
served. to generate *(xo). In geaeral, in attempting to identify the
true joint density function **(xex), we may or may not be concerned
with parameter evaluation.

However, in this system we are committed to parametric representa-
tion of the initial hypotheses. The functional forms hypothesized for
" (x,9) and .(ex/x;0) serve to restrict the infinite class of density
functions ,(x,ex;8,o) from which the given *(xo;e.0) could have been
generated. Individual members of the class are identified by unique
values of the 6 and 0. To state that the true joint density function
.*(xex;O*.O*) is identifiable, is to state that the true parameter
values 6* and 4* are all individually identifiable.

Let the 9* and 0* be exclusively location or translation parameters
(i.e., not shape parameters) of a true structural relationship I*, and
of an associated conditional error distribution respectively. These 6*
and #* are particularly susceptible to unldentifiability for the reasons
given. Consider the situation of Figure 3, where a large error bias,
uniformly applied over the x,y space, is indicated. Observe, that errone-
"ous values of 6,nm3ely 0' in the illustration are also compatible with
the observations under the assumption of little or no tranalatioti (or
bias) of the error distribution.

In such a situation, the ilse kypothesis .F would, for the indi-
cated observations, actually represent an equal likelihood alternative
to the true structural relationship 1*. F* and F' are of course only
two ecwuplas of the infinite family of structures which would represent
equal likeliho3 alternatives in zhis case.

Bias of course Is not necessarily constant over the space; there may
be more complex interaction. Also, it is not only the location para-
meters which interact. Howevert unidentifiability associated with inter-
action between the object phenomenon and the error phenomenon is but one
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Fig. 3 IlltstratirC Unidentifiability of Location Parameters

case in point, although perhaps the most important cc,.ie. Either the
object phenomenon or the error phenomenon can be of themselves inher-
ently unidentifiable.

With respect to identification, we are not at all concerned with
the problem of estimation. Whether or rnot the number of obser'/ations
(or sample size) is large enough to indicate that the parameters are
jointly determinate or over-determinate, it still mny not be possible
to identify some subset (or even any) of the individual specified para-
meters. However, it should be stated that this is not necessarily ar.
unhappy state of affairs.
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INMPREMTION OF REULTS

Surfaces of Unidentifiability

Thus the question of identifiability arises for models general]y,
and in particular for individual parameters. Unidentifinbility is
evidenced by the fact that the likelihood function in such cases pos-
sesses no unique maximum. However in general, all pertinent parameter
information is contained in the relationship between parameters which
is implied by the locus of equal likelihood maximum points in the para-
meter space, namely

L~e. max

Thus at least, the functional relationship between individually uniden-
tifiable parameters is always identif-Rt-2e in this sense.

Loci of likzlihood maximum points, here called "surfaces of uniden-
tifiability", are likely to be multi-dimensional surfaces. For simpli-
city in discussion, consider only monotonic surfaces. Regardless of
the dimensionality cf the parameter space, the dimensionality of such
a surface is equal to the number of parameters which must be evaluated,
arbitrarily or otherwise, in order to establish a unique maximum like-
lihood point in the parameter space. However, it is neither necessary
nor desirable that parameter values be assigned &rbitrarily, thereby
imposing information which is unjustifie I by either observation or
theory.

It should be remembered that our ultimate goal is model development.
To the extent that non-unique parameter estimates constitute in unsatis-
factory conclusion to the inveatigation, the investigator may wish to
nodify his specified l•potheses or take some other appropriate action.

'his he is uniquely qualified to do. He alone may possess valid auxili-
ary information, not previously included in the specifications; and he
alone establishes the goals and criteria of the investigation. For
example, he may know of no mechanism involved in observation which
could Justify the presumption of bias (E(ex)#O). He might therefore
choose to assume no error bias (using a criterio, of maximtim nimplicity).

A system requirement of no error bias would tend to dispose of un-
identifiability due to interaction between the calibration and object
models. However, it is specifically not the object of this discussion
to require, or even investigate, conditions for complete identifiability
of either models or individual parameters. In no case is it reasonable

46



that, for computational or analytic convenience, we impose assumptions
and conditions which are not realistic or generally acceptable in
scientific investigation.

Thus, caracterization of the set of all equal likelihood maximum
points in the parameter space is the appropriate ultimate conclusi.n
in any single application of this system. Further, it is essential
that the computer output be of such a form as to facilitate the investi-
gator's interpretation and use of the results. The characterization
can take the fora of:

1. A mique evaluation or estimate for each parameter.
2. A set of functional relationships between parameters which are

individually unidentifiable.
3. A representative subset of the likelihood maximum points.
4. A combination of these.

With respect to computer output, in some simple cases, tabulation may
suffice. In other cases, graphical or analytic representation of theý
suA'face of unidentifiability would be required. Analytic representation
might possibly require "fitting" a specified functional form to a repre-
sentative set of points either in reapplication of the system or by
appropriately modifying the initial lkpotheses. However, graphical
representation of selected cross-sections would seem also to be gener-
ally convenient.

In some trivial cases, superfluous unidentifiaole mrameters can be
eliminated by simple substitution, using the indicat ' relationship.
However in general, more elaborate procedures are rei ired; and in some
cases, the unidentifiability will probably never be e,,tisfactorily re-
solved.

Calibration

Presumably, the most caomo fore o unidentiflability is tbat
asiociated with errors in .observation. In measuring a table with a
previously unmsed ruler, we coin never be absolutely sure tbat the scale
s rnot significantly either tco short or too long, and if so by how

much. Classically the scale is calibrated aainst a known and accepted
standard. It clearly serves no purpose to check the measurement aginst
other previously unused scales, assumirg no other Inforwation, Or in
general, when calibration models include unevaluated location parameters,
no purpose Is sered in substituting other methods of observation, the
associated calibre.tion models for which also involve unevaluated loca-
tion parameters.
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Actual calibration against appropriate "standard object phenomena"
is much'to be desired, perhaps more so for the more complex phenomena
and models. In application of the system for the purpose of calibration,
we seek more complete specification of the calibration ,nodel prior to
its use in conjunction with other nonstandard object L.iodels. The idea-.
standard object phencmenon might consist of a finite, more or less uni-
form lattice of event points distributed over the object variable space,
at least encompassing the range of variables within which the object
phenomena to be investigated are likely to be centered. Parameter
values of the standard object phenomenon mcdej are most appropriately

,established by definition or with reference to other kncrn standards.

Thus, in the usual calibration situation, the calibration mT.el
parameters alone remain to be evaluated. Unidentifiability due to
error is thereby eliminated, unless there ib unidentifiability inherent
in the error phenomenon model as specified. However, it LiS conceivable
that not all standard object phenomenon parametcor values will be
established previously. In such a case, they may be evaluated along
with the calibration model parameters, providing no unidentifiability
is introduced by the interaction.

A requirement that actual calibration be employed in all cases may
be unnecessarily restrictive. Giver a surface of unidentifiability or
the set of all maximum points, in general we desire that the appropriate
number of parameter values necessary for complete identification be
included in the model specifications. This does not mean that all
parameters evaluated by specification mu.st be calibracion model pars-
meters. They need only constitute that subset of the nece.'sary .ize
about which the most information, not otherwise employed, is available.
Actual calibration is only one possible source of such information.

In the usual practical application of the system, where unidentifi-
ability due to error .is present, actual calibration is probably to be
preferred over other means of effecting complete identification. In
each specific instance, only the investigator is qualified to decide.

Considerations in Ilankind Models

An investigator my choose initial3y to include an additional para-
meter in the molel (a "fudge factor"), hopefully to counteract a poten-
tial weakness in his th-ory, or, as a device in theoretical exploration.
The introduction of additional parameters, above and beyond those which
are truly Justified by current theory, will nct necessarily result in
unidentifiability. Parameters which are superfluous in tl'.s sense may
take on eatimated values which are urA.que but effect no sig-,ificant
inf.uence in the model. Another possibility is that tne adailonal
flexibi ity thereby introduced into the model will result in a higher

48



but misleading value for the uaxiimum likelihood; a better fit is ob-
tained tu that variation in the observatioru3 which is attributable
solely to the randun ocmponent in sampling. Since this is always a
dangerous pospibility, the need for large samlples and verification is
again evident.

A deficiency in th nuiunber of specified unknown parameters may or
may not result in unidentifiability. However, Auch a deficiency always
constitutes a specification error and a poor fit of the model to the
observational data must result, with a consecuent low value for the
maximum likelihood.

In general, we can expect a higher maximum vallue for the 'ikelihocd
with a more conplicated model; but as always, we dL nct further our
6oal of r dei deVelopment unless a state of control is also :stablished.
Perhaps the maximum likelihood values should also be cýnsidered in re-
so?v'rg questions of state of control.

rie'-All also that maximum likelihood is an acceptable criterion for
celectcn oi' the best model from o number of models, providing that the
Game data it; used in each case. Thus a direct maximum likelihood com-
-Aris" o4 ooject phenomenon modds, %hich have been developed using
different methods of observation, is not necessarily valid. Additional
ni'ormticn concerning a state of ,lr.tual control" on the designated

p1 'eenomtna may be required. Also, an adjustment must be made for the
(difference in sample size.

Availability of the likelihood value makes its use convenient in
"ranking models; also the associated difficulties do not seem to be too
seriois. However, this method of ranking is probably not that wnich
is ultimately best.* Consider that the ability to predict has been
associated, in an earlier section, with the idea of understanding.
Prediction is only temporal extrapolation. Thus we can regard the
ability to extrapolate In the direction of other variables as a useful
criterion of the achievement of understanding, and consequently a useful
criterion in rcnking models.

Every model, and in fact every functional model component, can be
regarded as an implicit function of any variable in nature which is not
already involved in the functional expression. Model components, by
their specification, are presumed to be unchanging in the coordinate
directions of those variables which are omitted. Thus, no variable
is excluded from consideration in this sense..

*Note that "Goodness of Fit". in its specialized sense, is not con-
sidered in this discussion.
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Cleary,; the ability to predict is also evidence ofea state of
control; and further, the ability to extrapolate in the directian of
other variables is evidence of a generalized state of control. Thus,
given aome quantitative measure of generalized state cf controi, such
measure ary also be appropriate if not superior to likelihoal, in
ranking models.

State of Control

Recill that the object phenomenon, as designated, actually conrt'-
tutes a class of phenomena, namely that which ib the logical inter-
section of classes established by the indliyidual designating statements.
Within the desi6nated class intersection, there is generally roon ifor
some detectable variation (i.e., acceptable variation in "representa-
tive" sets of observations), random or otherwise. Any such variation
which is excessive, according to some criterion, is jy definitior. evi-
dence of lack of control.

In any serious attempt ,At model development, an-indicated signi-
ficantly large lack of control can hardly be tolerated. The investiga-
tor will usually choose not to narrow the scope of his investigation.L
From the informstion available, he will probably attempt to adjust his
initial specifications. Parameters will tend to vary in the degree to
which they are reproducible. He my therefore specifically devote his
attention to those model purumeters the values of which are relatively,
out of control.

Criteria for control are best estatblished with reference to the
distribution of observations. However ,as stated, the acceptable r-6-°
dual variation is also influential in the parameter space. Coruider a
situation involving unidentifiability, wherein a number of- .rndependent
investigAtions are conducted; and in each case, with the same object
phenomenon, the same method of observation, and the same initially
specified 1W-potheses. Then from eacn investigation, a surface of un-'
identifiability results.

Asuing only one member in the designated object class, or a "per-
feet state of control", for large sample size we would expect that all
of the surfaces vould effectively coincide. However, in practical model
develomnt, even assuing no sampling error, perfectlon is not likely
to be achieved. A more likely result is depicted in Figure 4. Here,
four surfaces ------ ,Pa4 are shown to be intersecting; although in
general, there s no reason that they should.

Ir the parameter space, measures of state of control could refer
to variation about so "central point". For example, the least squares
point for distances norl1 to each surface, where such exists, might
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Fig. 4 Evidence of' Specification Error or Lack of Control

be Optimtu. Any decreasing f~u~ction of the minimum sum of squares
cokild then be used to .ndicate degree of control.

The dotted circle of the illustration can be said to define a
region of acceptable risk; and in the same sense, the least squares
point may be considered to indicate the safest parameter estimates.
This is a barefaced behavioristic point of viev; but it seems to be
reasonable under the circumstances.

Thus, in these wys, the development of mathemtical models my be
pursued.

CONC"DIN3 R94MS

We heve been primarily concerned with the elimination of undue
restrictiors ihich are imposed on the investigator in his acceptance
of currenty• available procedures for data arlysis; a corollary concern
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has beer to point 'iut some important deficiencies of ordirnry investi-
gatveL procedures. To this end, an extension and synthesis of rclentt-
fic methods has been attempted.

A subsidiary goal has been to contribute to the elimination of
inefficiency in scientific investigation through contribution to methodd
of organization arid presentation. Ultinmtely, automation must effect
the greatest influence. In view of these goals, it is hoped that this
paper may also serve as a procedural guide or handbook.

By the term "nitial specifi-ations", it is not intended to imply
that no labor is iriV2Ved rin their formulation. In fact, it is likely
that this will constit-ite the investigators most difficult problem,
since it is here that •ii unique professional 5kills find their great-
est application. }'owever, it isz here also that the statistician may
prove moot helpful. In particular, he may assist in or even direct
conntruction of the calibration model. Also, he my assist in the
actual calibration.

The development of mathematical models must of course proceed con-
currently with the de-'elopment of the associated scientific discipline.
In the usual situation, initial hypotheses nte formulated with refer-
ence to previously developed object models, and Ln the lieht of new
information. Consequently, no 'verwhelming difficulty need attend con-
struction of the initial krpotheses at any one stage of the development.
The same conditionsýof course apply in formulation of the calibration
model IWrpotheses.
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